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Abstract

We present a new method for density estimation based on Mercer ker-
nels. The density estimate can be understood as the density induced on
a data manifold by a mixture of Gaussians fit in a feature space. As is
usual, the feature space and data manifold are defined with any suitable
positive-definite kernel function. We modify the standard EM algorithm
for mixtures of Gaussians to infer the parameters of the density. One
benefit of the approach is it’s conceptual simplicity, and uniform applica-
bility over many different types of data. Preliminary results are presented
for a number of simple problems.

1 Introduction

Kernel methods have proven themselves to be an efficient and effective method for a wide
class of machine learning problems. Kernel methods work by mapping data in some space
X non-linearly into some feature space F , and applying relatively simple learning methods
in the feature space. Historically, most kernel methods have been applied to supervised
learning tasks (e.g. support vector machines [1], Gaussian processes [2]), but recent work
has expanded their scope into unsupervised problems as well (e.g. kernel PCA [3], support
estimation [4], etc).

The prototypical unsupervised learning task is density estimation where we wish to infer a
probability density pX(x|DX) that accounts for a data set DX = {xi}Ni=1 (with xi ∈ X)1.
To date there has been relatively little use of kernel methods for density estimation. Recent
exceptions include the use of support vector methods to estimate cumulative distribution
functions [5]. Kernel ideas have also inspired improved variations of traditional Parzen
window density estimation algorithms [6]. We describe a new approach to density estima-
tion which combines the flexibility and modularity of kernel methods with the simplicity of
EM for Gaussian mixtures in order to infer probability densities over any data space, even
those having data elements with mixed type (e.g. discrete and continuous).

In kernel methods we assume a mapping Φ : X 7→ F taking each datum to a point in a dF
dimensional Euclidean space F . We indicate the mapped data by DF = {φφφi}Ni=1 where

1Scalar values are indicated by variables in regular font, while vectors and matrices are in bold
font and indicated by lower- and upper-case letters respectively.



φφφi = Φ(xi). If X has dimension dX then Φ maps X into a dX -dimensional manifold
embedded in F (assuming dF > dX ); we call this the data manifold. If the inference
algorithm used in the feature space uses only inner products, then the only knowledge
required ofΦ is contained in the kernel function K(x,x′) ≡ 〈Φ(x),Φ(x′)〉.2 An important
advantage of kernel methods is that even though the inference algorithm at work in F
operates on vectors in R

dF , the method applies to any type of data X so long as we can
identify a Φ mapping the data to F . By now there exist kernels for mapping many types of
data, e.g. graphs, trees, symbol sequences, etc., and thus the method proposed here may be
used to infer probability densities over all these types of data [7].

If the mapping Φ is suited to the learning task (i.e. the features defined by Φ are relevant),
then the inference algorithm at work in F can be very simple. For the density estimation
task considered here, we fit a mixture of Gaussian distributions to perform density esti-
mation in the feature space. This choice offers the benefits of modelling flexibility (with
enough Gaussians we can approximate any density), and an efficient EM algorithm for
determining the parameters of the Gaussians. However, as we will show, even a single
Gaussian pF (φφφ) ∼ G(φφφ|µµµ,ΣΣΣ) withµµµ andΣΣΣ estimated from DF is often sufficient to model
complex structure in pX . The density pX is obtained from pF by simply setting pX to the
the density induced by pF on the data manifold. This choice does mean the pX will not be
normalized, but we can sample efficiently from pX (even if it is highly multi-modal)3, and
thus estimate the normalization by Monte Carlo when it is needed.

The paper is organized as follows. In section 2 we derive an EM algorithm to fit mixture
of Gaussian densities in feature space by expressing the means and covariances of the
Gaussians as linear combinations of φφφi. Optimization of an objective expressible in terms
of kernel evaluations gives an update rule to identify the best linear combination. Section
3 then considers how the Gaussian density in F is mapped to a density in X , and section 4
demonstrates some results on simple problems. We conclude in section 4 with a discussion
of work in progress and a few open problems.

2 Gaussian Mixture Density Estimation in Feature Space

With M mixture components, the density model in feature space has the form pF (φφφ|θθθ) =
∑M

m=1 ρmG(φφφ|θθθm) where G(φφφ|θθθm) = |2πΣΣΣm|−1/2 exp
(

−(φφφ − µµµm)
>ΣΣΣ−1

m (φφφ − µµµm)/2
)

.
The parameters of the mth mixture are θθθm ≡ (ρm,µµµm,ΣΣΣm), and we group all param-
eters into the vector θθθ ≡ (θθθ1, · · · , θθθM ). The mixture probabilities must sum to 1, i.e.
∑M

m=1 ρm = 1. The EM algorithm is a convenient method to determine the parame-
ters θθθ of this mixture model. It is an iterative method in which an existing guess for the
parameters (call this θθθg) is updated by maximizing the average log posterior of the data
DF . The averaging is done over N hidden variables, zi, which indicate which mixture
was responsible for each observation. If p(z|DF , θθθ

g) is the the current estimate for the
probability of the hidden variables given a guess for the mixture parameters, then define
Q(θθθ|θθθg) ≡ E

(

ln p(DF , z|θθθ)+ ln p(θθθ)
)

where the expectation is performed with respect to
p(z|DF , θθθ

g). For Gaussian mixtures this is calculated as [8]

Q(θθθ|θθθg) =
M
∑

m=1

{

ln p(θθθm) +

N
∑

i=1

ln(ρmG(φφφi|θθθm)p(m|φφφi, θθθg)
}

2〈φφφ,φφφ′〉 is the usual inner product
∑

dF

α=1
φ(α)φ′(α) where φ(α) is the αth component of φφφ. If

F is infinite dimensional the sum is replaced by an integral.
3Work in progress.



where using Bayes rule

p(m|φφφi, θθθg) =
ρgmG(φφφi|θθθgm)

∑

m′ ρ
g
m′G(φφφi|θθθgm′)

(1)

is the probability that φφφi was generated by the mth mixture. Given the existing guess θθθg
a better guess is obtained by maximizing Q(θθθ|θθθg) with respect to θθθ. In this formulation
we have allowed for prior probabilities, p(θθθm), on the mixture parameters. This inclusion
is essential in order to guarantee that we obtain positive-definite covariance estimates. For
many kernels, dF > N so that naive estimation ofΣΣΣm would result in singular covariances.
We will not have need of priors over the means and mixture weights, and we employ an
inverse Wishart distribution for the prior over each ΣΣΣm [9]. The inverse Wishart distribu-
tion is given by p(ΣΣΣm|α, β,JJJ) ∝ |ΣΣΣ−1

m |β/2 exp
(

−α tr(ΣΣΣ−1
m J)/2

)

. The role of Wishart
parameters can be seen by maximizing the inverse Wishart distribution. The mode occurs
at ΣΣΣm = αJ/β. In what follows we will take J = I, the identity in feature space. Up to
irrelevant constants, log p(ΣΣΣm) = (β ln |ΣΣΣ−1

m | − α trΣΣΣ−1
m )/2. Defining

ngm ≡
N
∑

i=1

p(m|φφφi, θθθgm) and Sm ≡
N
∑

i=1

(φφφi −µµµm)(φφφi −µµµm)
>p(m|φφφi, θθθg) (2)

a standard calculation yields

Q(θ|θg) =
M
∑

m=1

{

ngm ln ρm +
ngm + β

2
ln |ΣΣΣ−1

m | −
1

2
tr(Σ−1

m Sm + αΣΣΣ−1
m )

}

.

Since the EM algorithm only has access to inner products in F we must express Q in
terms of the kernel K. To this end we write the mean and covariance as: µµµm = Vam
and ΣΣΣm = εmI + VBmV

> where V = [φφφ1 · · · φφφN ]. The parameters εm, am and
Bm that we need to determine are respectively a scalar, an N -vector and a positive definite
N × N matrix. With a slight abuse of notation we set θθθm = (εm,am,ΣΣΣm) which we
will determine by maximizing Q. We include a multiple of the identity to ensure that
ΣΣΣm is positive-definite. It is easily verified that the inverse of the covariance is given by
ΣΣΣm = ε̃mI+VB̃mV

> if

ε̃m = 1/εm and B̃m = −ε̃mB1/2
m (εmIN +B

1/2
m KB1/2

m )−1B1/2
m

where IN is the N ×N identity matrix,K is the symmetric positive definite N ×N Gram
matrix given by K = V>V = [Ki,j ] with Ki,j = K(xi,xj), and B1/2

m is the Cholesky
decomposition of Bm. For future reference we also note the identities

εmB̃m + ε̃mBm + B̃mKBm = εmB̃m + ε̃mBm +BmKB̃m = 0.

From these equations we may derive

ε̃mK
−1+B̃m = (εmK+KBmK)

−1 and εmK
−1+Bm = (ε̃mK+KB̃mK)

−1 (3)

which generalizes from inverses to pseudoinverses.

With the assumed representations for µµµm and ΣΣΣm, the argument of the exponential in the
mth Gaussian when evaluated at φφφx ≡ Φ(x) is (φφφx − µµµm)

>ΣΣΣ−1
m (φφφx − µµµm) = (φφφx −

VVV am)
>(ε̃mI+VB̃mV

>)(φφφx −Vam) which is equal to

= (kx −Kam)>B̃m(kx −Kam) + ε̃m(Kx,x − 2k>x am + a>mKam)
= ε̃m(Kx,x − k>xK−1kx) + (kx −Kam)>(B̃m + ε̃mK

−1)(ki −Kam)



where we have defined Kx,x ≡ K(x,x), and k>x ≡ φφφ>xV = [K(x,x1) · · · K(x,xN )].
If x is the ith data point then k>i K

−1ki = Ki,i = K(xi, xi) so that using Eq. (3) the
argument of the exponential can be written as

(φφφi −µµµm)
>ΣΣΣ−1

m (φφφi −µµµm) = (ki −Kam)>(εmK+KBmK)
−1(ki −Kam). (4)

Returning to the expression of Q in terms of inner products, we can show that |ΣΣΣ−1
m | =

ε̃dF−N
m |K||ε̃mK−1 + B̃m|. Thus ln |ΣΣΣ−1

m | which contributes to Q(θθθ|θθθg) is

ln |ΣΣΣ−1
m | = (dF −N) ln ε̃m + ln |K|+ ln |ε̃mK−1 + B̃m|

Further, exploiting Eq. (3) in Eq. (1) we see that

p(m|φφφi, θθθg) =
ρgm|εmK+KBmK|−1/2 exp

(

− 1
2 (φφφi −µµµm)

>ΣΣΣ−1
m (φφφi −µµµm)

)

∑

m ρgm|εmK+KBmK|−1/2 exp
(

− 1
2 (φφφi −µµµm)>ΣΣΣ

−1
m (φφφi −µµµm)

) (5)

with the arguments of the exponentials given by Eq. (4). Thus, the posterior probabilities
p(m|φφφi, θθθg) can be evaluated in terms of kernel values so that Sm defined in Eq. (2) can be
determined.

Finally, we consider tr(ΣΣΣ−1
m Sm + αΣΣΣ−1

m ) which also appears in Q. From the defining
equation forΣΣΣ−1

m

trΣΣΣ−1
m = ε̃m tr I+ tr(VB̃mV

>) = ε̃mdF + tr(B̃mV
>V) = ε̃mdF + tr(B̃mK).

Similarly, tr(ΣΣΣ−1
m Sm) = ε̃m trSm+trVB̃mV

>Sm = ε̃m trSm+tr B̃mV
>SmV. Using

the definition for Sm, and the fact that µµµm = Vam we find

trSm =
N
∑

i=1

p(m|φφφi, θθθg) tr(φφφi −Vam)(φφφi −Vam)> =
M
∑

i=1

p(m|φi, θθθg)(φφφi −Vam)>(φφφi −Vam)

=

N
∑

i=1

p(m|φφφi, θθθg)(ki −Kam)>K−1(ki −Kam) = tr
(

K−1Mm

)

.

where we have defined the N × N matrix Mm ≡ ∑

i p(m|φφφi, θθθg)(ki − Kam)(ki −
Kam)

>. The final term, tr B̃mV
>SmV, is expressed by noting that V>SmV =

∑

i p(m|φφφi, θθθg)V>(φφφi − Vam)(φφφi − Vam)>V = Mm. Combining these results we
find tr(ΣΣΣ−1

m Sm + αΣΣΣ−1
m ) = tr

(

(ε̃mK
−1 + B̃m)(Mm + αK)

)

+ αε̃m(dF − N) so that
Q(θθθ|θθθg) is equal to (up to constants independent of ε̃m, am, B̃m)

Q(θθθ|θθθg) =
M
∑

m=1

{

ngm ln ρm −
α(dF −N)ε̃m

2
+
ngm + β

2

(

ln ε̃dF−N
m + ln |ε̃mK−1 + B̃m|

)

−

1

2
tr
(

(ε̃mK
−1 + B̃m)(Mm + αK)

)

}

(6)

Maximizing this with respect to θθθ determines the update formulas for ε̃m, am, and B̃m.

2.1 Maximization of Q

To update ρm we maximize Eq. (6) with respect to ρm subject to the constraint that
∑

m ρm = 1. This yields

ρm =
ngm
N

=
1

N

N
∑

i=1

p(m|φφφi, θθθgm). (7)



Similarly setting variations dQ of Q with respect to variations dMm equal to zero gives

dQ = −1
2
tr
(

(ε̃mK
−1 + B̃m)dMm).

Thus the optimal am is determined by dMm = 0. Using the definition ofMm we find am
is determined from dMm = 2

∑

i p(m|φφφi, θθθg)(a>mK− k>i )dam = 0 which has solution

Kam =
∑

i

p(m|φφφi, θθθgm)
ngm

ki or am =
∑

i

p(m|φφφi, θθθgm)
ngm

ei. (8)

where ei is a unit vector in the ith direction.

Next we maximize Q with respect to B̃m to find the parameters for the covariance. Rather
than consider variations in Q with respect to variations in B̃m we consider equivalently
variations in T ≡ ε̃mK

−1 + B̃m:

dQ =
ngm + β

2
d(ln |T|)− 1

2
tr
(

(dT)(Mm + αK)
)

.

The variation in the log determinant is given by d(ln |T|) = tr
(

T−1(dT)
)

so that

dQ =
1

2
tr
((

(ngm + β)T−1 −Mm − αK)
)

(dT)
)

.

Thus T−1 = (Mm + αK)/(ngm + β). Recalling that T = ε̃mK
−1 + B̃m we find

(ε̃mK
−1 + B̃m)

−1 = εmK+KBmK =
1

ngm + β
(Mm + αK)

where we have utilized identity Eq. (3). Maximizing Q with respect to εm yields εm =
α/(ngm + β). This last result for εm gives a simple expression for Bm,

Bm =
N
∑

i=1

p(m|φφφi, θθθgm)
ngm + β

(ei − am)(ei − am)>. (9)

The complete EM updates are thus specified with equations Eqs. (7), (8), (9). The EM
iterations can be initialized with a K-means algorithm in feature space.

Singular K: In many cases the above equations may not be directly applicable becauseK
is singular (i.e. some φφφi are linearly dependent, e.g. when N > dF ). ThusV is effectively
a dF×r matrix where r < N is the number of linearly independentφφφi vectors (and the rank
of K). This means that rather than using the full inverse of K we use it’s pseudoinverse.
Since Eq. (3) also holds for pseudoinverses, we perform all calculations in an r dimensional
subspace of F corresponding to the non-singular eigenvectors of K rather than the full N
dimensional subspace.

Shifting the Origin in Feature Space: If the {φφφi} are far from the origin in feature space,
the Gram matrix conveys much less useful information. In some applications, shifting the
origin in feature space to the center of mass c =

∑N
i=1φφφi/N can improve performance

[10]. This is accomplished in the present context by expanding the mean and covariance
matrix in terms of φφφci ≡ φφφi−c. Because translations preserve inner products, the argument
of the exponentials is unaltered if c is absorbed into am. Thus the EM algorithm can be
applied as before with new definitions forKc and kcx.

3 From Feature Space to Data Space

Having determined the density pF in feature space we obtain the density inX by evaluating
pF on the data manifold in F .4 Explicitly, pX(x|DX) ∝ pF

(

Φ(x)|θθθ
)

. As noted earlier
4We might have induced a density on the data manifold as pX(x) =

∫

dφφφ δ
(

x − Φ−(φφφ)
)

pF (φφφ)

where Φ− is a surjection from F to the data manifold, but this would result in non-analytic forms.
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Figure 1: (a) Probability density obtained with two Gaussians fit to 100 noisy samples
(white dots) centered at the origin and in a circle of radius 2. Blue regions are low prob-
ability and high regions are red. (b) Classification boundary obtained from the posterior
probability p(m|φφφx); red indicates class 1 (white samples) while blue indicates class 2
(black samples). The pair of Gaussian densities in feature space. The 2 dimensional data
manifold is shown in the wire mesh with black dots representing the data samples. Four
isosurfaces of constant probability are shown in varying translucencies of red.

this density is not normalized. In fact, for kernel functions which are local and defined over
infinite spaces, i.e. K(x,x′) → 0 as ‖x − x′‖ → ∞ the density asymptotes to a tiny but
finite value and cannot be normalized. In spite of this unpleasant property we have found
good results even for Gaussian kernels.

4 Experiments

As a first example we demonstrate the geometry underlying our approach for X = R
2.

In order to visualize the results we select the quadratic kernel K(x,x′) = [x(1)x′(1) +
x(2)x′(2)]2 where x(i) is the ith component of x. For this kernel one choice for the map-
ping to feature space is Φ(x) = [Φ(1) Φ(2) Φ(3)]> = [x(1)2

√
2x(1)x(2) x(1)2]> for

which dF = 3. In Figure 1(a) we plot the density obtained using a 2 component Gaussian
mixture fit to a simple illustrative data set of 100 data points (white dots of Figure 1(a)).
One Gaussian captures data near the origin while the other captures the halo around the ori-
gin, see Figure 1(c). Regularization of the density is controlled by the α and β parameters
of the inverse Wishart prior over the covariance. In this example α = β = 1. Larger values
of these parameters result in more spherical covariance matrices and smoother density es-
timates. In Figure 1(b) we also plot p(m = 1|φφφx) for varying x. High values (red) indicate
points assigned to the cluster at the origin and low values (blue) indicate points assigned to
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Figure 2: (a) Fit obtained with a single Gaussian in feature space to 200 samples from two
Gaussians and a Laplace distribution. (b) Fit obtained to a sample of 30 bit strings drawn
from a mixture of 2 equally weighted Bernoulli distributions. The solid black line is the fit
with shaded circles showing where data points were located, and the true density is shown
as dashed blue. The spiky nature of the plot is due to representing each bit string by its
decimal equivalent.

the halo. The data has been colored white or black according to its true class label.

Next, we consider 200 samples from a mixture density in R
2 consisting of two Gaussians

(with means −[2 2] and [2 2], weights 0.3 and 0.3, and identity covariance), and one Lapla-
cian density (with weight 0.4) at the origin, pL(x) = |C−1| exp(‖C−1x‖1)/2dX with
covariance C = [1 − 0.6;−0.6 1]. A single Gaussian in feature space with α = 15 and
β = 1 and the kernel K(x,x′) = exp(−‖x− x′‖2)) results in the estimate shown in 2(a).
The estimate captures the sharp peak and fat tails of the Laplacian.

As a final example we apply the method to estimate a density over a discrete space. For
easy visualization5 we chose X = B

7, and used the kernel K(x,x′) = ρd(x,x) where
d(x,x′) is the Hamming distance between the bit strings x, and x′, and −1 ≤ ρ ≤ 1 is
a hyperparameter [7]. The results are not terribly sensitive to the value of ρ (as long as ρ
is positive). In Figure 2(b) we plot the fit obtained with two Gaussians to 30 samples (19
of which are distinct) from a mixture of two equally weighted Bernoulli distributions6 ρ
and β were arbitrarily set to 0.6 and 0.5 respectively, and α was set to 2.6 by leave one out
cross-validation. The fit is very good, even where the estimate is high or low, it captures
the change in probability as bits are flipped accurately.

5 Discussion

We have developed a conceptually simple density estimation procedure which works by fit-
ting a mixture of Gaussian distributions in feature space, and using the density induced on
the data manifold. The EM algorithm can be modified to easily determine the parameters
of the Gaussians. Preliminary results on simple test problems are encouraging. The method
scales well with the dimensionality of the data space dX , but poorly with the number of
training examples N . It would be useful to adapt methods from other kernel methods to

5Higher dimensions dX only affect the scaling of the algorithm through evaluation of the kernel
function.

6The probability of bit i being 1 was [0.9501 0.6068 0.8913 0.4565 0.8214 0.6154 0.9218] and
[0.2311 0.4860 0.7621 0.0185 0.4447 0.7919 0.7382] for the two mixtures.



choose good subsets of the data to improve the scaling with N [11]. The other important
improvement that should be made concerns the determination of hyperparameters. Cur-
rently, this is difficult because we do not have access to the normalization of the density
which depends on the hyperparameters. For general applicability, a method to overcome
this difficulty to automatically identify hyperparameters is desirable.

Though we have not outlined the details here, it is straightforward to modify the algorithm
to account for data spaces having mixed types, e.g. discrete and continuous elements. This
generalization will be reported elsewhere. The Gaussian description in feature space brings
with it significant advantages. Firstly, because Gaussians are simple to sample from, we
may be able use this to sample efficiently from pX(x). We are currently fleshing this idea
out. Secondly, classification/regression can be done by fitting a single Gaussian to the joint
space x and y, and determining pFy|Fx

(φφφy|φφφx). This induces a (typically non-Gaussian)
density pY |X(y|x) over the data manifold.
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